半岛官方网站下载

重磅发布!2019-20中国人机一体化智能系统10大热点

时间: 2023-11-23 16:43:58 作者: 智能驾驶域产品

  2019年以来,数字孪生技术(Digital Twin)慢慢的变成了我国智能制造领域的热点,数字孪生技术的应用场景不断丰富,跨越了产品设计、制造到运营服务的全生命周期。

  数字孪生技术的发展,源于CAD技术、虚拟仿真技术、工业物联网、VR/AR等人机一体化智能系统有关技术的发展与交叉融合。CAD技术经过半个世纪发展,从二维工程绘图到三维建模,再发展到全三维设计和基于模型的产品定义(MBD);虚拟仿真技术从有限元分析、流体分析到多物理场仿真分析,以及工艺仿真,再到数字化虚拟样机,以及数字化工厂仿真;工业物联网技术则针对重资产设备、无人值守的设备、可移动的复杂装备、智能互联产品,以及生产线和车间等场景,以多种数据来源(传感器、数字仪表、控制管理系统等)和高频次的数据采集为特征,基于工业物联网平台做应用;再加上VR/AR等可视化技术的迅速发展,使得数字孪生技术应运而生。

  目前,数字孪生技术的应用还没有一个单一和统一的平台来支撑,而是需要多个平台的协同配合。按照应用层次,数字孪生分为四级,分别是描述、诊断、预测及决策,其功能依次递增,实现从可视化呈现、智能诊断、科学预测到最终的辅助决策。

  e-works建议,具有产品全三维设计和MBD技术应用基础,以及工业物联网应用实践的大规模的公司可以建立明确的愿景,做好规划,梳理路线图,但一定要建立分阶段的明确目标,真正在每个阶段创造实际的价值,而不是做一些炫酷的面子工程。

  2019年,中国工业软件业务收入保持较快增长,为支撑工业领域的自主可控发展发挥了及其重要的作用。然而,中国工业软件的生存“土壤”与欧美工业软件强国相比还存在比较大差距,国产工业软件企业的竞争力还存在很明显的“后发劣势”,中国工业软件产业高质量发展仍任重而道远。

  对于拥有工业门类最全、全球第一制造业大国的中国来讲,工业软件的重要性毋庸置疑。工业软件是现代产业体系之“魂”,广泛渗透和应用于几乎所有工业领域的核心环节。工信部信软司在与工业软件产业高质量发展有关文件中指出:工业软件是指专用于或大多数都用在工业领域,为提高工业公司研发、制造、生产管理上的水准和工业装备性能的软件。工业软件有多种角度的分类方式,目前并没形成国际公认的统一标准。

  e-works认为工业软件可包括三类软件:支持工业公司进行产品研发创新的工具类和管理类软件、支持公司进行业务运营的各类管理软件、支持对设备和自动化产线进行管控以及数据采集和安全运行的工控软件(产品内部运行的嵌入式软件不在本主题讨论范围内)。

  经过30多年的发展,我国工业软件产品种类已经比较齐全,覆盖汽车、工程机械、航空航天、高科技电子、家电、国防军工、石油化工、食品饮料、生物医药等多个行业,具备了一定的行业解决方案研发能力和服务支持能力。2019年,我国工业软件业务收入保持较快增长,累计完成业务收入1720亿元,为支撑工业领域的自主可控发展发挥了重要作用。

  e-works认为,中国工业已经发展到了转型升级的关键阶段,工业企业对工业软件提出了更加迫切的需求,我国工业软件企业应该抓住工业公司进行数字化转型的巨大机遇,坚持开放与合作,实现广泛国际合作基础上的协同创新与共同发展。

  当前,中国工业软件产业的发展是面对一个相对成熟的存量市场,在此状况下,我国的工业软件企业不应追求面面俱到,而是要做专做精,在细分行业、细分领域打造自己的优势产品。面对国外软件企业,应当强调竞合,集成国内外优秀软件,优势互补,打造解决方案;面对国内同行,则应当改变传统的低价恶性竞争,打造自身独特优势,真正实现共同进步,不断推动中国工业软件产业的健康快速发展。

  随着智能制造战略的深入,推动企业的运营管理系统与制造执行系统的纵向集成与贯通已成为当前企业新的应用需求,也加速了IT与OT的融合进程。与此同时,OT厂商和IT厂商也开始重视统一架构标准的建设工作。

  IT与OT融合时常被作为重要的产业趋势,旨在通过两者的融合打通运营管理系统与制造执行系统之间的数据链路,将二者整合在一个统一的信息平台上,从而帮助企业提升在运营决策与制造执行等各方面的综合效益。

  然而,IT与OT融合并不容易,除了需要面对跨界投入不稳定、不确定的风险以及设备、人力等成本的挑战外,IT与OT本身所具备的特性也为二者融合设置了障碍。

  随着TSN与OPC UA两大标准的发展,OPC UA在水平方向将不同品牌的控制器设备进行集成。在垂直方向,TSN则实现设备到工厂再到云端的连接,推动IT与OT的融合。可以预见,在主流OT厂商和IT厂商均支持OPC UA和TSN的趋势下,IT与OT融合的诸多问题开始被逐一解决,打通“从计划层到执行层”的全业务流程数据,实现企业内部由上而下的业务纵向集成也水到渠成。

  在全球经济一体化进程中,技术的发展、消费文化的变迁以及市场结构的变化,正加速改变着全球制造业的竞争格局。以增材制造技术为代表的新一轮科技革命,正受到全球制造行业的广泛关注,世界各国纷纷把增材制造作为未来产业发展的新增长点,我国也从资金、政策等角度对增材制造产业的发展予以大力支持,尤其在发布《增材制造行业发展行动计划》后,我国增材制造服务产业及技术迎来了发展新契机。

  ● 一类是以美国3D Systems公司和Stratasys公司为代表的综合性增材制造服务商,他们从设备制造商起家,通过研发与并购不断向上下游拓展延伸业务,将材料、软件、服务等技能逐步收入囊中,逐步演变为可以提供综合增材制造解决方案的服务商;

  ●第二类是增材制造工作流程解决方案与打印平台的服务提供商,例如Materialise、Shapeways等,都属于不生产增材制造设备,只面对应用用户提供整体解决方案,其中成立于1990年的Materialise拥有业界最大的软件开发团队与全球顶级的增材制造工厂,其经过认证的生产和质量流程能满足为要求最高的行业服务的标准,全球多家知名汽车公司、航空制造公司以及电子消费品公司都是他的客户;

  ●第三类是各行业巨头直接进军增材制造领域,扮演增材制造服务商的角色,例如,美国工业巨头通用电气旗下的GE Additive具备了增材制造全产业链的支持服务,从金属增材制造设备到三维建模软件和服务系统等,GE Additive都可以为客户提供相应服务和整体解决方案。

  从我国市场来看,增材制造服务产业规模已经初步形成,涌现出一批具备一定竞争力的骨干企业,典型代表包括太尔时代、先临三维、铂力特、鑫精合、华曙高科、飞而康、闪铸科技、悦瑞三维、汉邦科技、安德瑞源、易加三维、科恒、未来工厂、云铸三维、联泰科技、敬业增材、光韵达医疗、德科精密科技、黑格科技、永年激光、雷佳、捷诺飞、共享集团等,他们为增材制造服务产业的发展提供了有力的支撑。尤其在2019年,专注于工业级金属增材制造的铂力特成功在科创板挂牌上市,意味着我国的增材制造成长空间逐步打开,对整个增材制造产业的发展带来了积极的推动作用。

  未来已来,将至已至。全球增材制造服务产业发展正处于快速商业化阶段,目前市场以欧美企业为主导,中国企业紧随其后。随着增材制造服务产业与信息技术、新材料技术、新设计理念的加速融合,制造业的方方面面有望被重塑。展望2020年,增材制造服务产业的发展仍然值得期待,在经历了市场的浮躁和沉寂,整个增材制造服务产业正在朝着积极的方向发展。

  当前,制造企业人工智能与大数据分析应用正在加速落地,无论是产品、质量、运营还是能耗都可以通过人工智能和大数据分析算法来进行分析。制造业中不同运营阶段所产生的海量非结构化数据也为人工智能AI落地提供了诸多场景。例如,无人驾驶、智能产品、表面质量检测、语音拣货、生产排产、供应链优化、创成设计、预测性质量分析和预测性维护、客户需求预测等已成为人工智能技术典型的应用领域,产生很多优秀实践案例。

  人工智能和大数据技术应用的最根本的核心是让复杂的东西变的简单化、便捷化、人性化和个性化。以美的集团为例,从企划、研发、生产到最后的服务,都能看到人工智能的算法和大数据技术应用的身影。通过广泛深入的AI与大数据分析技术应用,美的集团可以精准理解用户需求,打造最符合用户需求的产品;在生产方面,各类在线AI视觉检测设备使用令产品生产过程中的质控水平有了质的飞跃,既节省了人力又能够提质增效;在产品服务方面,更是凝聚了所有AI技术的核心,比如交互智能化、服务智能化、生态智能化。美的集团打造的科技、智能高端品牌Colmo,就将人工智能和大数据技术淋漓尽致地体现在家电产品中。

  富士康推出的“雾小脑”则重点通过将人工智能技术与设备相融合,发展智能生产设备,将核心生产设备都智能的连接起来,包括设备本身以及设备生产所需要的材料,结合大数据分析,通过专业知识处理后再加上人工智能的方法,利用智能设备把工人从重复繁重的工作中解脱出来,实现“新制造”。例如,SMT(表面贴装技术)等微型零部件的贴面清洗周期大概为6万次,极易出现失误,而富士康的雾小脑技术利用软件的整合分析,以传感器为五官灵敏地收集各方数据,在数据建立模型之后,真正做到实时预测和监控,全程精准把控生产流程,成本节省了超过60%。

  e-works认为,企业既不能盲目追求新技术应用,也不能抗拒新技术带来的变革。要实现智能化变革,就必须在企业的产品设计、工艺设计、生产制造、工厂运营、产品服务等各个阶段中找到关键的应用场景,针对具体应用场景中面临的挑战与问题,切合需求来合理应用人工智能和大数据等新兴技术,找到真正合适的解决方案,最终产生的成效也将远超想象。

  作为新一代信息技术与制造业深度融合的产物,工业互联网日益成为新工业革命的关键支撑和深化“互联网+先进制造业”战略的重要基石。虽然目前工业互联网热潮涌动,但是我国的工业互联网应用还处于初级的阶段,各界对工业互联网的认识与理解不太统一,工业互联网的应用仍然面临诸多挑战。最具代表性的是工业互联网应用深度和广度不足。

  由于企业认知水平的差异,部分工业企业对工业互联网带来的新应用、新模式缺乏清晰认识,不知道能够解决哪些问题、带来哪些商业价值。就算了解需求在哪,也没有一套标准帮助他们在形形的厂商中找到适合自己的解决方案。

  除此之外,企业广泛存在数据孤岛问题,业务数据被封锁在各个系统、部门和设备中,即便企业有意愿尝试基于工业互联网,数据匮乏也是巨大的挑战。更重要是,工业互联网项目为定制化系统,需要大量的资金投入、漫长的实施周期,绝大多数中小企业很难承受。

  在《指南》以及新基建等政策的引导下,依托行龙头企业,工业互联网标准体系得以在一些领域全面推进。目前工业互联网标准体系的建设主要集中在标识解析、工厂内网、网络资源管理、边缘设备、工业大数据等产业发展急用的标准,重点在“广度”,而不在深度。未来随着工业互联网应用的深入,以及标准体系的“深度”上加力,工业互联网标准体系的建设也必然日趋完善。

  过去,仿真技术是一种稀缺资源,主要用于高端复杂产品的初始设计与物理测试的验证工具;而今,随着仿真技术的进一步发展,很多厂商都开始着力于将仿真技术普及化、平民化,进而带来了更加革命性的变化——仿真驱动企业创新发展。纵观ANSYS、Altair、MSC.Software(目前隶属于海克斯康集团)、ESI等专业仿真软件厂商的发展历程,始终关注企业需求,把技术创新放在首位,不断提升软件的功能、性能、鲁棒性、运行效率,进而驱动企业的创新发展。

  近年来,随着仿真技术在企业中的适用性不断提高,仿真技术平民化更加凸显,主要手段包括将仿真功能嵌入到CAD环境或者将CAD功能嵌入到仿真环境;加强仿真流程自动化;加强仿真数据和流程管理等。同时,仿真App、模板的兴起,也使得非专业仿真人员更容易使用仿真技术。此外,越来越多的组织提供云计算服务,越来越多的仿真厂商致力于开发简便易用的CAE软件,也使得仿真技术日趋平民化。而仿真技术的平民化,又可以协助企业改变设计习惯、优化设计流程、减少时间损耗,从而使创新变得更加容易。

  例如,世界知名的意大利发电机和电机制造商Marelli Motori采用ANSYS Discovery Live软件,实时改变产品几何结构或工况得到最佳设计,从而大幅缩短了设计时间,并提高了产品的可靠性;全球风电整体解决方案提供商金风科技通过使用Altair SimSolid软件,在短时间内对复杂的直驱风机主传动系进行结构分析,最大程度降低了仿真前处理的工作量,大幅提升了产品的设计效率;全球领先的林业、公园及园艺护理户外动力产品生产商富世华集团借助MSC Nastran软件实现了产品的高效优化疲劳分析,提升了客户对产品的满意度;欧洲从事城市公交车生产的MAN Bus工厂一直在使用ESI集团IC.IDO虚拟现实协同决策平台,实现了快速响应市场需求,并确保产品在正确的时机发布与交互。

  e-works认为,创新是实现制造强国的基础,而仿真技术则是创新的核心。尽管当下不少企业在进行产品决策时还是依赖于经验法则,但这不妨碍仿真技术走向平民化。随着5G、人工智能、物联网等大趋势的推动,随着仿真软件、硬件和处理速度方面的进步,随着人们对更智能、更高效的产品设计的追求,将会有更多的企业认识到仿真是必不可少的创新工具。届时,普遍而深入地运用仿真技术将不再是少数企业的竞争优势,而会成为所有企业的必备技能。

  近年来,国家为加快制造强国、加快发展先进制造业、培育若干世界级先进制造业集群、促进我国产业迈向全球价值链中高端,以及拓展“智能+”等战略与一系列政策为引领,为制造业转变发展方式与经济转型赋能;在传统制造企业层面,为了适应不断变化的市场需求,众多企业也积极推进数字化转型,改造原有的生产制造方式,着力建设智能工厂,以提高生产效率,提升产品质量,重塑企业竞争优势,实现可持续发展。

  在国家的战略与政策推动以及企业转型拉动的急切需求下,以工业数字化、自动化与智能化应用为核心的智能工厂系统集成商正在野蛮生长。然而,智能工厂系统集成商及其解决方案的评价标准的缺失,已成为当前国家和制造企业支持与建设智能工厂、推进智能制造的重大阻碍。

  智能工厂系统集成商主要针对设计研发、生产制造、运营管理、精准服务和物流调度等各场景的应用需求,为制造企业提供智能工厂的项目规划与咨询、系统设计与实施、集成安装与调试以及培训支持与运维管理等系统服务,将各类来自于上游供应商的零散设备、控制系统等集成为满足下游制造企业特定需求、切合行业及现场应用的解决方案,从稳定性、可靠性、持续性等方面满足制造企业建设智能工厂的需要。

  据估计,目前国内存在着数以千计的智能工厂系统集成商,且覆盖行业已从传统的汽车行业向3C电子、食品、金属加工、医疗等行业延伸。然而,由于智能工厂系统集成的市场准入门槛低、具有“非标”特性,且存在行业差异性,这就决定了当前智能工厂系统集成尚未走入完全标准化的成熟阶段,必然形成小型系统集成商争相涌入、国内智能工厂系统集成商鱼龙混杂、水平参差不齐的局面,同时制造企业如何有效评估智能工厂系统集成解决方案的可行性与合理性也成为亟待破解的难题。

  事实上,作为智能工厂集成解决方案的提供者,智能工厂系统集成商给制造企业带来的收益与陷阱并存:一方面,智能工厂系统集成商可帮助制造企业提高生产效率,节约人力成本,提高产品质量;同时可通过收集数据、对数据进行处理分析,助力制造企业实现智能化、柔性化生产,持续改善生产效率与产品质量;另一方面,智能工厂系统集成商在技术上的局限,方案设计上的缺陷,以及对方案的风险评估不够,也可能会给制造企业带来潜在的数字化、自动化与智能化陷阱,导致投入与收益不成正比。

  e-works认为,针对当前的智能工厂系统集成及制造企业现状,亟需建立起科学客观的智能工厂系统集成商及智能工厂系统集成解决方案的评价标准,从制造企业的现状与实际应用需求出发,保证制造企业在前期评估过程中能够系统、全面地把握智能工厂系统集成方案,并合理科学地导入,使智能工厂的建设与应用真正落到实处、发挥实效。

  随着时代发展,企业很多终端设备都需要具备更快速、近距离的数据处理能力。由于云端在数据处理中面临的诸多挑战,边缘计算应运而生。据IDC预测,到2020年,全球将有超过500亿的终端和设备联网,其中超过50%的数据需要在网络边缘侧进行存储、处理和分析。在工业互联网、5G商用探索等热潮引领下,边缘计算在2019年备受产业关注,不仅仅是云计算巨头,包括制造企业、运营商、产业研究机构以及各种联盟,都对边缘计算倾注了极大的热情,2019年甚至被认为是“边缘计算元年”。

  虽然在诞生之初,边缘计算被认为是云计算的“终结者”。但经过时间验证,云计算和边缘计算的关系更加清晰:在企业应用中,云计算擅长整体、非实时的大数据处理与分析,能够在长周期维护、业务决策支撑等领域发挥优势;边缘计算更适用局部、实时、短周期数据的处理与分析,能更好地支撑本地业务的实时智能化决策与执行。由于边缘计算解决了在边缘端的资源应用问题,成为了云计算在未来发展中的重要支撑,边缘计算与云计算势必彼此融合,随之而来的就是“云边协同”。

  例如制造企业在推进智能制造的过程中,更倾向于安装和连接边缘智能设备处理关键任务数据并实时响应,而不是通过网络将所有数据发送到云端等待处理。针对预测性维护,单点故障在工业级应用场景中是绝对不能被接受的,因此除了云端的统一控制外,工业现场的边缘节点必须具备一定的算力,能够自主判断并解决问题,及时检测异常情况,更好的实现监控,提升工厂运行效率的同时也能预防设备故障问题。制造企业通过边缘端将处理后的数据上传到云端进行存储、管理、态势感知;同时,云端也负责对数据传输监控和边缘设备使用进行管理。

  对于许多制造企业而言,在应用边缘计算过程中往往会碰到边缘侧设备数量庞大、多样,缺乏统一的接口规范、传输协议等现实问题。另一方面,云边资源的分布式协同需要依据用户需求进行动态计算,这对于许多IT处理能力薄弱的企业而言也将是一大技术挑战。因此,企业需要注意云边协同的推进方式,不能为了把靠近用户侧的产品和业务扣上边缘计算的帽子,而盲目将计算能力边缘化部署。e-works建议制造企业从典型的业务需求场景出发,综合考虑成本因素和实际效果,逐步将部分能力下沉到边缘侧。

  2019年6月,随着5G商用牌照的发放,中国正式进入5G时代。5G产业也由技术验证阶段进入到商用化阶段。按照此前工信部与运营商制定的5G计划时间表,中国5G商用牌照发放时间提前了半年。但业界专家认为,5G要真正普及应用仍然缺乏杀手级应用。就像文字传输于2G、图片应用于3G、视频交互于4G,5G要实现快速发展就必须激活行业对于高带宽、低时延和广连接等特性的应用需求。

  2019年一个明显的趋势是,越来越多的5G厂商开始由传统的C端市场向B端市场转型,重点开拓基于行业的5G应用需求。尤其是在工业互联网领域,制造企业正面临解决工业设备互通互联的基本需求,5G的深化应用能很好地支撑这一需求,帮企业获取生产过程中的数据,并进行实时的传输和分析,赋予生产过程以柔性化和智能化。

  在e-works针对行业应用需求调查中,制造业占比要远高于其它行业,占比高达37%,特别是数据采集、远程控制、视频监控、产品检测等应用需求比较强烈。对制造业而言,5G的优势在于可为高度模块化和柔性的生产系统提供多样化、高质量的通信保障。与传统无线G在低时延、高密度海量连接、可靠性以及网络移动性等方面优势明显。

  因此,当前5G最主要解决的是企业有线网络布线困难以及成本高的问题,在实时性要求较高的场景中解决4G网络带宽小和时延高的问题,但对于目前普遍关注的5G与人工智能、边缘计算、机器视觉等融合应用,仍处于探索阶段。

  5G作为新一代网络技术,对支撑智能制造发展的重要性不言而喻。今年工信部发放了四张5G牌照,意味着我国提前进入5G商用阶段。但必须认识到,中国5G商用化进程才刚刚开始,大范围应用的条件尚不具备,5G网络的建设部署还有待时日。

  尽管当前很多厂商已经推出了面向不同行业的5G解决方案,但这些方案仍然致力于解决企业的无线覆盖问题,处于比较初期的应用阶段。未来,随着5G商用化进程的加快,5G网络各种指标能力的不断的提高,以及与人工智能、边缘计算、大数据的融合应用,对各行业应用场景的支撑能力也会不断加强。企业要推动智能制造转型,必须深化对5G工业应用场景的应用探索。

  特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

  旧金山凌晨2点!OpenAI多位高管:没有员工,OpenAI什么都不是

  字节跳动寻求以50亿美元出售沐瞳科技 买主或为沙特主权财富基金旗下公司

  Model Y长续航再涨两千元,特斯拉一个月内4次调价是为年末促销做准备?

  绿军爆冷加时惜败:塔图姆45+13+6+7三分丢关键罚球 惨遭18分逆转

上一篇:中国制造要走向人机一体化智能系统主要还存在五大难点

下一篇:干货!2022年中国智能制造业有突出贡献的公司分析——中控技术:流程工业领域人机一体化智能系统的领军者